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A Robust and Adaptive Force/Position Control
for Two Cooperating Robot Arms Under Uncertainty
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This paper presents a motion coordination of a two-cooperating robot arm when there are
unknown system parameters and bounded input disturbances. The order of the model of the
two-arm system is reduced. To control this, a force/position control scheme based on an inverse
dynamics control scheme is devised. On the top of the control scheme, an adaptive control
scheme to take care of parametric uncertainties, and a robust control scheme to compensate
coupling forces between two arms and input disturbances are devised. The adaptive and the
robust control scheme are derived based on a devised Lyapunov function. The adaptive control
algorithm is practical since it does not require the feedback of the second derivative of joint
angles and interacting forces. The robust control scheme guarantees that the tracking error of the
leader arm and the interacting forces between two arms are confined in a certain region.

Numerical examples using dual 3 degree of freedom robot arm are shown.
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1. Introduction

There are many applications of robots in
assembly automation and flexible manufacturing
systems such as material handling, maintenance,
etc. These applications require coordinated opera-
tion of robot arms which are kinematically and
dynamically coupled. For this reason, many coor-
dinated control schemes are devised and some of
them are based on a master/slave (or leader/fol-
lower) control which are devised by Ishida
(1977), Tarn (1986), Arimoto (1987), and Ro
(1991). Ishida (1977) and Ro (1991) devised a
PID and a computed torque scheme to control the
positions and velocities of the leader arm, respec-
tively, while the slave arm is controlled to follow
the leader arm by the force feedback. Arimoto
(1987) devised a control law based on Lyapunov
Direct Method to ensure zero steady state opera-
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tion of the coordinator. Tarn (1986) devised a
dynamic coordinator which generates the control
action based on relative force/torque errors
between the two arms where a linearlization
scheme is also applied. The kinematic relations
between two coordinated robots in handing sev-
eral different shape of object is studied by Luh
(1987). In the presense of parameter uncertainties,
actuator nonlinearlities, and bounded distur-
bance, a robustness analysis of a two-interacting
system is shown by Ro (1989). Hayati (1986) and
Uchiyama (1988) devised hybrid position/force
control method where the leader arm is coordinat-
ed to unconstrained direction while the force
control is applied to constrained directions.

In the presence of unknown or changing system
parameters, the system dynamics may show un-
desirable overshoot or instability. To solve this
problem, several adaptive control schemes are
formulated in robotics. Craig (1986) and Midd-
leton (1988) devised adaptive control schemes
based on a computed torque scheme. The scheme
requires the feedback of the acceleration and the
inversion of the inertia matrix of robot arm which
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is function of the estimated parameters. By using
the skew symmetric relationship between the
derivative of the inertia matrix with respect to
time and the Corliolis and centripetal term, the
structure of the manipulator dynamics is sim-
plified via feedback by Saddegh (1987) and Slotin
(1986). As a result, a computationally simple
adaptive control algorithm is formulated. In addi-
tion to the problem of the parametric uncer-
tainties, Reed (1988) studied the robustness of the
adaptive control scheme with respect to system
unmodeled dynamics,
However, all the

uncertainties such as

parameter variations, etc.
adaptive control schemes mentioned above are
devised for non-cooperating robot arms.

Seraji (1988) devised an adaptive position/
force control approach to the dual-arm problem.
By employing an adaptive PID structure, knowl-
edge of the mathematical model of the system is
not required. The coupling effects between the
manipulators, through the common payload. are
modeled as disturbances in the position and force
equations, which are then compensated for in the
adaptation rule. By Choi (1992) and Hu (1989),
in the presence of parametric uncertainties of
multiple interacting robot arms, adaptive algor-
ithms are devised, and stability analyses are
shown.

When there exist disturbances such as uncertain
inputs, noises, etc., the response of the system
shows undesirable system behavior and tracking
errors. In order to solve these problems, a robust
control scheme to take care of disturbances is
devised by Chen (1986) and Leitmann (1979). Cai
(1990) and Chen (1991) applied the control
schemes to robot manipulators. Especially, by
Chen (1991), in conjunction with a computed
torque method, nonadaptive robust versus robust
adaptive control is applied to manipulators, and
both schemes are compared to each other by the
simulation results.

In this paper, a robust and adaptive control
scheme in conjunction with an inverse dynamics
control scheme for motion coordination of a
two-cooperating robot arm is presented. Based on
an inverse dynamics control scheme, the leader
arm is coordinated by a position control scheme

and the interacting forces between two arms are
regulated by a force regulator. However the
parameters of the system are unknown such that
an adaptive control algorithm is devised, which is
improved from Ortega’s (1988) algorithm. The
devised algorithm is practical because the feed-
back of the acceleration of the joint angles and
the second derivative of force is not required. To
take care of the coupling forces between two arms
and input disturbances, a robust control scheme
adapted from Chen (1986) and Leitmann (1979)
is applied. Numerical examples for the devised
control scheme is shown.

In Section 2, the leader arm dynamics incorpo-
rate the object dynamics such that the order of the
two-arm system dynamics is reduced. In Section 3,
based on the reduced order model, a position
control scheme by the inverse dynamics control
scheme is applied to coordinate the leader arm. In
section 4, the dynamics of the follower arm are
modified as force dynamics such that a direct
force control scheme is applied based on an
inverse dynamics control scheme. In section 5, to
take care of the parametric uncertainties as shown
in Section 3 and 4, a practical adaptive control
scheme based on Lyapunov’s Second Method is
devised. In addition to this, a nonlinear robust
controller is designed to counteract the coupling
forces between two arms and bounded input
disturbances. In Section 6, a numerical example
using dual 3 degree of freedom robot arm is
shown to validate the devised control scheme.

2. Two-Arm Dynamics

In this paper, the dynamics of the object is
incorporated into that of leader arm and consid-
ered as a portion of the arm dynamics. Therefore,
(3nx1) size of two-arm dynamic systems are
reduced to (2n x 1) size of dynamic systems. This
is shown by Choi (1992). For convenience, the
leader arm is called arm 5 and the follower arm
is called arm ¢ in this paper. The equations of
motion for two robot arms coordinating an object
can be expressed as the following :

Halqa) §at Calgar Gad=rtat+JilgadFa (1)
Holgo) § s+ Colgss o)==+ /Hg)Fy (2)
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where g,(g,) is the % X1 joint angle vector for
arm g(arm p); r(z,) is the xx1 joint torque
vector for arm g(arm p); H,(H,) is the C(C,)
is the nonlinear force vector of size » x 1 includ-
ing gravity term ; and J,(J,) is the 5 x » Jacobian
matrix of arm g(arm p). F,(F},) is an 3 x | vector
representing the forces and the moments at the
point of interaction between arm g(arm p) and
the object. The equations of motion for the object
can be expressed as the following :

Moo+ Qul or x0)=— LIF—LIF, (3)
where x, is an 4 X1 vector representing the
position and orientation of the object center in
the tnertial space ; M, is an 6 X 6 inertia matrix of
the object ; (), is the 6 x 1 nonlinear force vector
of the object including the gravity term. X g
matrix [ ,([.,) represents the Jacobian matrix
associated with a finite length between the center
of the object and the interaction point g($). The
object is assumed to be rigidly grasped by arm 5.
Arm j and the object are kinematically related
such that the velocity and the acceleration of the
mass center of the object are expressed in terms of
the joint coordinates of robot arm 4 by the
Jacobian matrix J, as the following :

Xo=L3' o G0 .

Ko=Ls'Jods+Lo'JsgstLs'ois (4
By substituting Eq. (4) into Eq. (3), the object
dynamics are expressed in joint coordinates as

MoG( d o> Q'b) + Qob( d e Qb)
=—LlF,—LiF, (5)

where

Gl Go)=L5s"Jods+L5" Juds

+ L3 Todios

@Qos TEPrESENts (), in the joint coordinates of arm
b. Expressing Eq. (5) with respect to interacting
force F, and substituting it into Eq. (2) yield

HYGo=1o4 Coo— 7F2 (6)
where
§F=Hy+JiLs" MoLs' s,
y=Ji{L," L] and
Cor= _]bTLngb— Co
—JSLs " MALS Js+ L J o) o

where [} represents the inertia matrix of arm 5

dynamics incorporating that of the object. C,,
represents the nonlinear force vector of arm 4
dynamics incorporating that of the object. y rep-
resents the Jacobian matrix reflecting the interact-
ing force, F, in joint space of arm ¢ to arm 4.

3. A Position Control of Leader Arm
via an Inverse Dynamics Control
for Two-Arm Coordination
under Uncertainty

The open-loop arm 5 dynamic equations show
that the dynamics of arm § are disturbed by the
interacting force, F,. An inverse dynamics con-
trol is proposed to achieve position control of
arm p such that 7, is composed as

Z’b:ﬁ:( (']'db*deE‘Kpr* Us)

+ Cont+Ds(t) (7)
where F=g,—qas(?). qur(t) is 2 bounded desir-
ed input signal; ¥ and C,, are initially well
estimated such that it is no longer a function of
the estimate of the unknown parameters by the
adaptive control algorithm. For this reason, in
this paper H} is called a known estimate of the
inertia matrix H%; C,, is also called a known
estimate of the nonlinear force vector C,,; U, is
an additional control to be designed; D,(f) is a
bounded input disturbance. Time invariant diago-
nal matrices K, and K, are the » X » derivative
and proportional gain matrix, respectively. By
applying control 7, to the open-loop arm 5
dynamic equations, the resulting equations of
motion become

E+ KawE + KpE
=Up+ H} NAH? § o+ ACos
~ vFa+Ds(1)) (8)
Arranging the previous equation yields
E+ KaE + KpoE
=Usi+ Use+ Hf NAHY G an— AHZ § 45
+ACoo+AH5 Go— yFa+ Do(t)) 9

where UU,= U, + Uss. U, 1s an additional con-
trol for an adaptive control, and [/,, is an addi-
tional robust control to compensate for the inter-
nal coupling forces and input disturbances. In Eq.
(6) and Eq. (7), an expression for the joint accel-
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eration is obtained as
FUHMN - Us)+ACos
—yFa+ Dy(1)) (10}
where N = (., — KuE — Ky, E. Rewriting Eq. (9)
with Eq. (10) yields
E+ KpE + Ko E
= Upi+ Une+HE " Wolges o Gan) APy
‘ﬁjilAHf;k(‘jdb’l"};rﬁk;ldH: I;’(Vl
{HXN = Uy 4+ ACon— yFu+ Do)}
+HF Do) — yED) (1)

qs=

where

Wb(qbv []b, (.IIdb)APb:AHEK (.I‘dh +ACob-

de:ﬁb*Pb,
and Wy(gs G da») 1S the nxy matrix of
known functions requiring only the feedback of
the position and velocity of joint angles, and P, is
a 7 x| vector of an unknown parameters of arm
b such as the mass and inertia of the links and the
object. P, is a » x| vector of a known estimate of
parameters of arm p. An additional control for an
adaptive controller is designed as

Up=—H}"! Welgs: G o (.[.db)dpb
where
WodPo=dH? G ao+ ACos with
Aﬁh:ﬁb‘pb
also where
JH=H}— Hf, and
ACob: Coh - Gub
in which P, is an estimate of unknown parame-
ters of arm § including an object. From now on,
Wolgss Go Gan) is expressed as W, for conve-
nience. Applying [/,, to Eq. (11) and arrangingit
yield
E+KuE+ Ky E
=H} ' WoPo+ Uss
+82u(qe, ¢or Taps Far t) (12)
where P,= P, — P, and
o= wo1+ 22 — KanE)+ Qs — KpE)
+ Qo2 — Upz) (13)
with

Wp1= *(Ikﬁfﬂfﬁk)(’{.dt}
+(H:71ﬁ:71)é].db

+([—H " HOHE A o
+(HF ' — H ' NACos+ACos
- ')’Fa+Db(f))

+ HF U Dut) = yFa)

Quo=(HF"H}—1)
and

Hr\AHY=1— H "H}

Hi "VAHYH Y Hrf=H}Y"Hf— 1.
Equation (12)
dynamics with the parametric errors HX'W,D,
and the disturbance term @, including the coupl-
ing forces and input disturbances. In order to

represents the closed-loop

-

regulate the internal coupling forces F,, a force
required such that direct force
dynamic equations are derived from arm g
dynamics in the joint space. The derivation is

regulator is

shown in the next section.

4. A Force Regulation of Follower
Arm via an Inverse Dynamics Control
Scheme Under Uncertainty

In Eq. (1), the arm 4 dynamics are expressed in
terms of the joint coordinates. In order to express
the arm 4 dynamics in terms of force dynamics,
the arm 4 dynamics must be expressed in task
space beforehand. The joint coordinates can be
mapped to the task space by Jacobian matrix as

Go=Ji'%a
Ga=Ji'XatJa'Ka (14)
With Eq. (13), arm 4 dynamic equations become,

Ka=JaH M Us+ JiFa— Ca)
~JaJa'%a (15)
Eq. (14) represents the dynamics of arm ¢ inter-
acting with arm ) where the acceleration and the
velocity of the arm 4 dynamics are expressed in
task space. In Eq. (15), the interacting force can
be expressed as

Fa:Kpp(Xa"xb) (16)

where K, is n X diagonal force sensor gain
matrix. Also, in Eq. (14), the velocity and acceler-
ation of arm ¢ in task space can be expressed by
the first and the second derivative of force vector
respectively as.
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Xa:Xb‘+'Kt71)1Fa’

Xa= X5+ Kip Fas

/.\'.a - ).C.h + Kp‘.plFa
By substituting the above equations into Eq. (15)
and arranging them, force dynamic equations for
arm ¢ are expressed as

[)IKEpl Fa + ,OzK;;png + R

:Ta+](17 e~ Cq (17)

where

(J]:Ha]EIQ ,02:.’{(1].51,

R=HJ"%Xo+ Ja' X
and the trajectory is well defined such that ;! is
and bounded. In the force
dynamic equations of arm g, the interacting force

always existent
F, can be regulated by a direct force control
scheme.

In control of arm 4, an inverse dynamics con-
trol scheme with desired force dynamics is com-
posed as

ta= 01K (M — Up) + oKt Fa
- (ITFa+€a+Da(t) (18)
where

M:Fda*deEf—Kprf,
pr=HdJa' o2=Haf '
and £,=F,— Fa(t) in which F(¢) is a bound-
ed desired input signal ; A, is a known estimate
of the inertia matrix of arm ¢; C, is a known
feedforward estimate of the nonlinear force vector
of arm ¢ dynamics (C,; U, is an additional
control to be designed ; D,(¢#) is a bounded input
disturbance, and K,, and K, are the yxgzn
positive diagonal time-invariant proportional and
derivative gain matrix, respectively. Applying the
proposed control in Eq. (18) to Eq. (17) yields
PlKEz}Fa: o1 Ko (M —U,)
+(p2— ,O)Kp_plFa
+Ca—Ca— R+ Dal(t)
Arranging the previous equation yields

E;+ KuE;+ KosEy
=U;+ Kppp1 (do1 Kip F
¥R+A,02Kp7[}Fa+ACa+Da(f))

where

do1= 01— 1. do2= 02— 02

and in g, the known estimates are well chosen
such that it is invertible and is not near-singular
such that p7! is always upper bounded. Based on
this condition, arranging the previous equation
yields

Ert+ Kubr+ Kpiky

=Un+ Up+ Kpp o1

Wiqa Gar Fas Fas Fuar VAP,

+ Kpp 0T (401 Ko Fa— 401K Faa

— R+ Dd(1)) (19)

where

WdP;=A01Kpp Eaa+ 402 Kpp Fat ACa

AP, =P, — Py, AC,=Co— C,
and UU,=U;,+ Uy in which [/, is for an
adaptive control ; and {J,, is for a robust control
to compensate the internal coupling forces and
input disturbances ; W, is the 3 X s matrix of the
known functions only requiring the feedback of
the force and its first derivative; P, is a gx |1
vector of a known estimate of the parameters of
arm g, and R is the internal coupling forces
between arm ¢ and p including the ¥, term. By
Eq. (10) and the Jacobian relation, ¥,= J,jo
+ /.4 R can be expressed as a function of the
first order states. A control for an adaptive con-
troller is designed as

Un=—Kpp1' WP,
where

W AP, =46, Kpp Eaa+ 402K Fo+ACa,
also where

Adp1=p1— p1- 4p2= 02— P2

Aﬁf:Ff*ﬁf, Aéa:éa_éa
and P, is an estimate of the unknown parameter-
sof arm 4 which is updated by the adaptive
control algorithm. Applying the previous control
to Eq. (19) yields

Er+ KatEs+ Ko sEs

= Koot ' WiPr+ Ut (20)

where

P,=P,—P,, and

2= Kpppi (o1 Ko Fo

—do1Kip Faa— R + Dol 1)} @n
In Eq. (15) and Eq. (18), the second derivative of
interacting force is expressed as
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Fa=Kppoi (o2 K Fa— R+ 51K,

(M —Uy)=ACs+ Do)

= Koot (d0:Kid Fu— R+ 51K

(11/1 - (,’Y/]) - A(:a + [)a( f))

— Kpppi ' 01 Kpp U ro- (22)
Substituting Eq. (22) into Eq. (21) and rearrang-
ing it yields

Qr=wsi+ Q2 — [(def) + Q0 — KpES)

+ 25~ Uys) (23)

where
(Uj]ZKpp( ()fl ﬁ| - [)

(dooKit Fo— R+ 0. Kpp Faa— 4C

+ DN+ Kpp i

( *d()lK;;[)lF;,m — R+ [)(1( f))

szz K’PIJ(HH 1[7(1 - [)K[;pl
with
oitdai=pr'—pr!
7' A0 Koy Kppoi ' 01=01" 01— 1
:H(‘I%Hvail

5. Adaptive and Robust Controller
Design and Its Stability Analysis

Rewriting Eq. (12) and Eq. (20) yields
E + K'dbE + KphE = [T{‘ik;l I’I"Yh[:)b -+ .Qb + th
Ef + [\/def + KpEr = Kpp o7 WiPr + 2+ Uy
The above equations can be expressed as 25 % |
error dynamic equations with nonlinear coupling
and bounded
input disturbances. Expressing them in a matrix

forces, parameter uncertainties,

expression as
X+CX+GCX=WP+Q+U

[ E . [ Kae 0 ]
X‘[E,]’ C"[ 0 Kl

[ K O ] -__[ﬁb]
(,-[ S B

[ o sz}
'Q_[.Q,}’ (’“[Uﬂ

W:[ oW, O ] (24)
0 K "W

and X is 27 X | vector. W is 25 X (» -+ ¢) matrix

of known functions of arm ¢ and 4. P is (» +5)

x | vectors of parameter estimate errors, £ is 25

x 1 vector of bounded nonlinear coupling forces

and input disturbances, and {J is a robust control
to counteract 2 term. Expressing the closed-loop
two-arm dynamics in state space form yields

X=Y,
Y=~CY~-GX+W(X. V)P
+Q+U (25)

Also, a Lyapunov function V= V(X, ¥, P} is
chosen as

V=Y +CX, Y+CX>+<Y, Y

+2(GX. X)+<P, I'P> (26)
where [7 is a 2y X 2 symmetric positive diagonal
matrix. The Lyapunov function V(X, Y, P)isa
convex function and positive scalar because the
matrices ( and (; are defined as positive diago-
nal matrices. Differentiating the Lyapunov func-
tion of the Eq. (26) yields

+2Y+CX, 2+ U
TQRYHCX. WPO+(P. TPy (27)
where the last two terms in Eq. (27) become
QY+CX. WP+<{P, I'P)
=(WPY QY+ CX)+P'TP
=PY{W"Q2Y +CX)+ TP} (28)
where in order to eliminate the last two terms
which are not negative definite, an adaptive con-
trol algorithm is designed as

P=-T"W'Q2Y+CX) (29)
where the 1#’7 is a known function of the position
and velocity of the joint angles and the force and
its first derivative. The adaptive control algorithm
is practical since the position and velocity of the
joint angles and the force and its first derivative
are measurable in reality.

In the third term of the righthand side of Eq.
(27),

QY+CX, L+U>=QY+CXHNHR+U)
£ can be expressed as

R=2+2(—U) (30
where Q=+ @ X +a: Y with

Wo1
a = .
Wr

@ :[ Qoo — Kps) 0 :|
’ 0 Qu(—Kp)
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623:[ oo — Kap) 0 :|
O .QfZ(;de)
and (2 is defined in Eq. (13) and Eq. (21) such
that
2 0 }
0 .Q/Z '

Also, a robust controller is designed as

o]

U=*Wﬁp Uluel>e
U:‘%p ifllul<e (31)

where 4 is defined as

n=2Y+CX),

and ¢ is an arbitrarily small positive constant.
In Eq. (30), assume that there exists positive
function p as

el <lal+lallX]
Flasll Y1+ 1200=0 (32)

such that
o=bi+b| X || +5bs| Y| (33)

where

== 21" al
by=(1— “ £ ” )t H a2 ”a
s == 12 )" || as |

where in order to have positive definite function p
satisfying Eq. (32), two conditions are required as

max | H¥ 'Hy— 1] <1
max “ Kpp(Hglﬁa*I)KEpl “ <1 (34)

Rewriting Eq. (27) with the adaptive control in
Eq. (29) and the robust control in Eq. (31),

V=—(CX, GX)—<Y, CY>
+Q2Y+CX, 2+ U>
=—X'CGX - Y'CY+QY+CX)T
(R+U<-X'CGX~Y'CY

+2Y+ CX)T<mp+ U) (35)

By the control (31), the third term goes to zero for
| 2] >e; if | | <e, the minimum is obtained
at || || =(1/2)e such that

Vg*AchTX_ACYTY%’(E/“)
(b1+bz”X” + b3 H Y“)
< _Acg( ” X “ ‘Ebz/(s/icg))z/lg

(| Y —ebs/(8A))+d (36)

where  d=(e/4) b+ (eb2)?/ (64 jcg)+(ehs)?/ (64
Ag)s Ace andA, are the minimum eigen values of
CG and C matrices, respectively. In Eq. (36), in
order to have the condition for negative semi-
definite of the derivative of Lyapunov function,
position and velocity ellipsoid are obtained as

“ /2 H = Ebz/(g/icg) +(d//1cg)l"2
| 7o | =ebs/(82¢) +(d /A (37)

If | X| =27 and | Y| 275, then V<0 is
obtained. The above equations imply that the
state vector of the closed-loop two-arm system is
confined in a region. The state vector is composed
of the error states of the two-arm system such that
the boundedness of the error states are guaran-
teed. Also, 7, and 7, are a function of ¢ such that
the bounded region gets smaller as 5, and 7, gets
smaller.

6. Numerical Example

In these numerical examples, a two-arm motion
coordination is simulated by the inverse dynamics
control scheme in conjunction with the adaptive
and robust control. For numerical simulation,
dual 3 degree-of-freedom planar arms holding an
object with unknown mass and inertia are used
with a point mass at the center of each arm as
shown in Fig. 1. The test input signals for the
leader arm are composed of the composite of
three sinusoidal functions with different fre-
quencies. For 10 seconds, two arms are coordinat-
ed. The initial and final positions of the mass
center are (X,=1.38m, ¥;=0.0m) and (X,=1.7

ARM b
L3 L3

ARM o

UBJECT

Fig. 1

A dual arm system
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m, ¥,=1.2m). The gains for position and force
controllers are assigned K, =6, Kp,=10 and for
force controller, K,,=0.6, K,,=10, respectively.
For arm ¢ and arm p, ¢ of the robust controller
is assigned by the number 0.05 and 0.03 respec-
tively. Adaptive gains for mass and inertia are 14.
5 and 3 in Fig. 2(c¢) and 33 and 3.7 in Fig. 3(c),
respectively. The dimensions of the arms are also
shown in Table I number 0.05 and 0.03 respec-
tively. The dimensions of the arms are also shown
in Table 1.

In the Figs. 2(a), 2(b), 3(a), and 3(b), the upper
part represents the force regulation between the
two robot arms, and the lower part represents the
input command following of the leader arm. In
Figs. 2(c) and 3(c), the dashed lines represent the
actual mass and inertia, and the solid and dotted
lines represent their estimates. Tz, Fx, F'y repre-
sent torque about z-axis, force along y-axis, and
force along y-axis applied on the end effector of
arm ¢, respectively. Ky and Ey are the position
errors along x-axis and y-axis between desired
and actual trajectory.

The simulation plots are composed of two sets
of cases : first, Figs. 2(a), 2(b), and 2(c), show the
cases in which a two-arm system coordinates an
object with pulse shaped input disturbances
between 2 and 3 seconds after the two-arm is
coordinated under an initially unknown mass and
inertia of the object. ; second, Figs. 3(a), 3(b), and
3(c) show the cases in which a two-arm system
coordinates the object with an initially known
mass and inertia but has an unknown change of
the mass and inertia after 2 seconds the two-arm
is coordinated. In Figs. 2(a) and 3(a), only a
force/position control based on an inverse
dynamics control is applied to coordinate the
two-arm system. Due to these parametric uncer-

Table 1 Demension of a dual arm system

H Ar[; Obj—.ﬁ Len. of ;:\Mr;w Mass | Moment of Ine.
L, . I m 2 kg 0.2 kg-m?
L, O Im 2kg 0.2 kg-m?
L, 0.5m 1 kg 0.1 kg-m?
L, 0.134m 20 kg 3 rkg-mz

417

tainties and input disturbances, the plots show
considerable coordination errors of the leader
arm and interacting forces between two arms.
When an adaptive and robust control in conjunc-
tion with a computed torque control is applied,

J
X

2 4 5 8 10
Time(sec)

Force/Torque(Newton/Newton -m)

UNKNOWN OBUECT (Mass & Iner.)

(KD = 6, KP = 10, KFD = 0.5, KFP = 10)

o

C ian Position Error(m)

-0.054 X L
- EY
-0.1 ; T y r
0 2 4 6 8 10
Time(sec)
Fig. 2 (a) Force /position control under distur-

bances

0 2 4 [ 8 10
Time(sec)

(KD = 6, KP = 10, KFD = 0.6, KFP = 10)

UNKNCWN CBJECT (Mass & tner.)

’a | 1 L 1 f
E 0051 deM : 145 |
deli : 3.
'«§ \“"
-E ot M2 S A R VL
!
‘ - EY
g -0.051 — EX -
0 2 4 6 8 10
Time(sec)
Fig. 2 (b) Force /position control with an

adaptive and robust contro! under distur-
bances
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L L L s
154 deiM : 14.5 L
L deli @3
Mass
——- Iner
104 r
54 -
0 2 4 6 8 10
Time(sec)

Fig. 2 (c) Parameter estimation by an adaptive con-
trol under disturbances

the system shows a good response which reduces
position errors of the leader arm and interacting-
forces significantly. The response of the closed-
loop system is shown in Figs. 2(b) and 3(b). Also,
the proposed controller shows a robust response
to the input disturbances as shown in Fig. 2(b). In
Figs. 2(c) and 3(c), parameter estimations of the
actual values of the unknown and changed mass
and inertia are respectively by the
proposed adaptive control scheme.

According to the above numerical simulation
results, the adaptive and robust control scheme in

shown

T

‘Time(sec)

Force/Torque(Newton/Newton-m)

UNKNOWN CBJECT (Moss & lner.)

(KO = 6. KP = 10, KFD = 0.6, KFP = 10)

Position Error(m)

-0.5H

4 6 8 10
Time(sec)
(a) Force/position control under a step

change of mass and inertia

Fig. 3

Force/Torque(Newton/Newton-m)

UNKNOWN OBJECT (Mass & Iner.) Time(sec)

(KD = 6, KP = 10, KFD = 0.6, KFP = 10)
1 1 1 1

005 deiM : 3.7
deli : 33

Cartesian Position Error{m)

’ ———EY
~0.05 — b
0 2 4 6 8 10
Time(sec)
Fig. 3 (b) Force/position control with an adaptive

and robust control under a step change of
mass and inertia

20+

15 delM : 33 L
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Mass

=== lner

104
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0 2 4 £ [ 10
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Fig. 3 (c) Parameter estimation of the step changed

mass and inertia by an adaptive control
under disturbances

conjunction with the inverse dynamics control
shows a good motion coordination of the two-
arm system under parametric uncertainties. Also,
the control scheme shows a robust response to the
coupling forces and input disturbances while
estimating the actual values of the unknown

parameters.
7. Conclusion

A force/position control scheme based on an
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inverse dynamics control scheme in conjunction
with a robust and adaptive control scheme is
presented for motion coordination of a two-
cooperating robot arm. The adaptive control
algorithm is practical since it does not require the
feedback of the acceleration of the joint angle and
the second derivative of the forces. Also, the
robust control scheme is devised to counteract
disturbances such as coupling forces between two
and bounded
robust and the adaptive control schemes are

arms, input disturbances. The
derived based on a devised Lyapunov function.
The boundedness of the state errors are guaran-
teed by the devised control scheme. Numerical
simulation is shown to validate the results of the
proposed control schemes. According to the simu-
lation result, unknown parameters of two-arm
system is estimated well by the adaptive control
scheme. Also, by the robust control, the distur-
bances are counteracted significantly. In this way,
the proposed control scheme shows a good trajec-
tory following.
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